Real Mathematical Analysis
Elucidates abstract concepts and salient points in proofs with over 150 detailed illustrationsTreats the rigorous foundations of both single and multivariable CalculusGives an intuitive presentation of Lebesgue integration using the undergraph approach of BurkillIncludes over 500 exercises that are interesting and thought-provoking, not merely routine
Autor: | Pugh, Charles Chapman |
---|---|
ISBN: | 9783319330426 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 478 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Veröffentlicht: | 15.10.2016 |
Schlagworte: | Brouwer fixed point theorem Lebesgue integral Riemann integral calculus mathematical analysis multivariable calculus nowhere differentiable continuous function point-set topology real analysis real numbers |
Charles C. Pugh is Professor Emeritus at the University of California, Berkeley. His research interests include geometry and topology, dynamical systems, and normal hyperbolicity.