Mathematical Modeling of Emission in Small-Size Cathode
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
Autor: | Danilov, Vladimir Gaydukov, Roman Kretov, Vadim |
---|---|
ISBN: | 9789811501944 |
Sprache: | Englisch |
Seitenzahl: | 194 |
Produktart: | Gebunden |
Verlag: | Springer Singapore |
Veröffentlicht: | 01.10.2019 |
Schlagworte: | Electron heat conductivity Heat transfer Melting and solidification Nottingham effect Numerical simulation Phase-field system Specific conductance Stefan-Gibbs-Thomson problem Support function in metals Thermo-field emission |
Vladimir G. Danilov received the Ph.D. degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 1976, and the D.Sci. degree from Moscow State University, Moscow, in 1990. He is currently a Professor with the National Research University Higher School of Economics, Moscow. His current research interests include linear and nonlinear problems of PDE, asymptotic methods, and mathematical simulation. Roman K. Gaydukov received the M.S. degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 2012, and the Ph.D. degree from National Research University Higher School of Economics, Moscow, Russia, in 2016. He is currently an Associate Professor with the National Research University Higher School of Economics, Moscow. His current research interests include asymptotic methods, mathematical and numerical simulation, field emission, fluid mechanics and boundary layer theory. Vadim I. Kretov received the M.S.degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 2008, and the Ph.D. degree from National Research University Higher School of Economics, Moscow, Russia, in 2019. His current research interests include mathematical simulation, field emission, and numerical solution of PDE.